MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. EN 1.4910 Stainless Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while EN 1.4910 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is EN 1.4910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.8
41
Fatigue Strength, MPa 80
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 320
650
Tensile Strength: Yield (Proof), MPa 250
290

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.9
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
220
Resilience: Unit (Modulus of Resilience), kJ/m3 430
210
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34
23
Strength to Weight: Bending, points 40
21
Thermal Diffusivity, mm2/s 65
4.3
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
0
Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.25
62 to 69.9
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
12 to 14
Nitrogen (N), % 0
0.1 to 0.18
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0