MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. EN 1.7725 Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.8
14
Fatigue Strength, MPa 80
390 to 550
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 320
830 to 1000
Tensile Strength: Yield (Proof), MPa 250
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1110
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 430
980 to 1940
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 34
29 to 35
Strength to Weight: Bending, points 40
25 to 28
Thermal Diffusivity, mm2/s 65
11
Thermal Shock Resistance, points 15
24 to 29

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.25
95.7 to 97.5
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0