MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. S40930 Stainless Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while S40930 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is S40930 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 2.8
23
Fatigue Strength, MPa 80
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 320
430
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1110
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
80
Resilience: Unit (Modulus of Resilience), kJ/m3 430
94
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34
16
Strength to Weight: Bending, points 40
16
Thermal Diffusivity, mm2/s 65
6.7
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 0.2 to 0.7
0
Iron (Fe), % 0 to 0.25
84.7 to 89.4
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.080 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0.050 to 0.2
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0