MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. 1200 Aluminum

Both EN AC-46000 aluminum and 1200 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
23 to 48
Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 1.0
1.1 to 28
Fatigue Strength, MPa 110
25 to 69
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 270
85 to 180
Tensile Strength: Yield (Proof), MPa 160
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 530
400
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 620
660
Melting Onset (Solidus), °C 530
650
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 100
230
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
58
Electrical Conductivity: Equal Weight (Specific), % IACS 82
190

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 170
5.7 to 180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 26
8.7 to 19
Strength to Weight: Bending, points 33
16 to 26
Thermal Diffusivity, mm2/s 42
92
Thermal Shock Resistance, points 12
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 79.7 to 90
99 to 100
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
0 to 0.050
Iron (Fe), % 0 to 1.3
0 to 1.0
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 0.050
Nickel (Ni), % 0 to 0.55
0
Silicon (Si), % 8.0 to 11
0 to 1.0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.050
Zinc (Zn), % 0 to 1.2
0 to 0.1
Residuals, % 0
0 to 0.15