MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. AISI 304LN Stainless Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while AISI 304LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is AISI 304LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
7.8 to 46
Fatigue Strength, MPa 110
200 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 270
580 to 1160
Tensile Strength: Yield (Proof), MPa 160
230 to 870

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
83 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140 to 1900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
21 to 41
Strength to Weight: Bending, points 33
20 to 31
Thermal Diffusivity, mm2/s 42
4.0
Thermal Shock Resistance, points 12
13 to 26

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
18 to 20
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
65 to 73.9
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Nickel (Ni), % 0 to 0.55
8.0 to 12
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 11
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0