MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. ASTM A369 Grade FP9

EN AC-46000 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
140
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
20
Fatigue Strength, MPa 110
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
75
Tensile Strength: Ultimate (UTS), MPa 270
470
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 530
270
Maximum Temperature: Mechanical, °C 180
600
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 82
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1040
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
80
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 33
17
Thermal Diffusivity, mm2/s 42
6.9
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
8.0 to 10
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
87.1 to 90.3
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 11
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0