MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.0348 Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.0348 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.0348 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
110
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
28
Fatigue Strength, MPa 110
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 270
380
Tensile Strength: Yield (Proof), MPa 160
220

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
50
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.1
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.5
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
91
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
13
Strength to Weight: Bending, points 33
15
Thermal Diffusivity, mm2/s 42
13
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 79.7 to 90
0.020 to 0.2
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0 to 0.15
0 to 0.3
Copper (Cu), % 2.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
97.5 to 99.98
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 0.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.55
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 11
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0