MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.3558 Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.3558 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.3558 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
230
Elastic (Young's, Tensile) Modulus, GPa 73
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 270
770

Thermal Properties

Latent Heat of Fusion, J/g 530
240
Maximum Temperature: Mechanical, °C 180
490
Melting Completion (Liquidus), °C 620
1810
Melting Onset (Solidus), °C 530
1760
Specific Heat Capacity, J/kg-K 880
410
Thermal Conductivity, W/m-K 100
20
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
13
Electrical Conductivity: Equal Weight (Specific), % IACS 82
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 2.8
9.3
Embodied Carbon, kg CO2/kg material 7.6
8.4
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1040
90

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 49
21
Strength to Weight: Axial, points 26
23
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 42
5.3
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0.7 to 0.8
Chromium (Cr), % 0 to 0.15
3.9 to 4.3
Copper (Cu), % 2.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
73.7 to 77.6
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 0.4
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 11
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.0 to 1.3
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0