MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.4005 Stainless Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
13 to 21
Fatigue Strength, MPa 110
240 to 290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 270
630 to 750
Tensile Strength: Yield (Proof), MPa 160
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 530
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
30
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 82
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
350 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
23 to 27
Strength to Weight: Bending, points 33
21 to 24
Thermal Diffusivity, mm2/s 42
8.1
Thermal Shock Resistance, points 12
23 to 27

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0 to 0.15
12 to 14
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
82.4 to 87.8
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0