MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.4347 Stainless Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.4347 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.4347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
23
Fatigue Strength, MPa 110
320
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
79
Tensile Strength: Ultimate (UTS), MPa 270
660
Tensile Strength: Yield (Proof), MPa 160
480

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 620
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1040
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
570
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 33
22
Thermal Diffusivity, mm2/s 42
4.0
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.15
25 to 27
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
62.2 to 69.4
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 1.5
Nickel (Ni), % 0 to 0.55
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.0 to 11
0 to 1.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0