MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.4513 Stainless Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.4513 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.4513 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
26
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 270
480
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 180
880
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.5
Embodied Energy, MJ/kg 140
35
Embodied Water, L/kg 1040
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
17
Strength to Weight: Bending, points 33
18
Thermal Diffusivity, mm2/s 42
6.8
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.15
16 to 18
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
77.7 to 83.1
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.4
Nickel (Ni), % 0 to 0.55
0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.15 to 0.8
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0