MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.4613 Stainless Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.4613 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
21
Fatigue Strength, MPa 110
180
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
79
Tensile Strength: Ultimate (UTS), MPa 270
530
Tensile Strength: Yield (Proof), MPa 160
280

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Maximum Temperature: Mechanical, °C 180
1050
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
19
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 82
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.6
Embodied Energy, MJ/kg 140
38
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
91
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 33
19
Thermal Diffusivity, mm2/s 42
5.2
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 79.7 to 90
0 to 0.050
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
22 to 25
Copper (Cu), % 2.0 to 4.0
0 to 0.5
Iron (Fe), % 0 to 1.3
70.3 to 77.8
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.55
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.2 to 1.0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0