MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.7102 Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.7102 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.7102 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
200 to 480
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 270
670 to 2010

Thermal Properties

Latent Heat of Fusion, J/g 530
270
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
47
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.6
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1040
48

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 26
24 to 72
Strength to Weight: Bending, points 33
22 to 46
Thermal Diffusivity, mm2/s 42
13
Thermal Shock Resistance, points 12
20 to 60

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0 to 0.15
0.5 to 0.8
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
96.2 to 97.3
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0.5 to 0.8
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 11
1.2 to 1.6
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0