MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. CC483K Bronze

EN AC-46000 aluminum belongs to the aluminum alloys classification, while CC483K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
97
Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 1.0
6.4
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 270
310
Tensile Strength: Yield (Proof), MPa 160
170

Thermal Properties

Latent Heat of Fusion, J/g 530
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 620
990
Melting Onset (Solidus), °C 530
870
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 100
68
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
10
Electrical Conductivity: Equal Weight (Specific), % IACS 82
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 7.6
3.8
Embodied Energy, MJ/kg 140
62
Embodied Water, L/kg 1040
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
17
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 26
9.9
Strength to Weight: Bending, points 33
12
Thermal Diffusivity, mm2/s 42
21
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 79.7 to 90
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
85 to 89
Iron (Fe), % 0 to 1.3
0 to 0.2
Lead (Pb), % 0 to 0.35
0 to 0.7
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 0.2
Nickel (Ni), % 0 to 0.55
0 to 2.0
Phosphorus (P), % 0
0 to 0.6
Silicon (Si), % 8.0 to 11
0 to 0.010
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
10.5 to 13
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0 to 0.5
Residuals, % 0 to 0.25
0