MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. SAE-AISI 1552 Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1552 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is SAE-AISI 1552 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
11 to 14
Fatigue Strength, MPa 110
290 to 400
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 270
760 to 840
Tensile Strength: Yield (Proof), MPa 160
460 to 650

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
11
Electrical Conductivity: Equal Weight (Specific), % IACS 82
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
81 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 170
560 to 1130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
27 to 30
Strength to Weight: Bending, points 33
24 to 25
Thermal Diffusivity, mm2/s 42
14
Thermal Shock Resistance, points 12
26 to 29

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Carbon (C), % 0
0.47 to 0.55
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.3
97.9 to 98.3
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
1.2 to 1.5
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.0 to 11
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0