MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. C44500 Brass

EN AC-46000 aluminum belongs to the aluminum alloys classification, while C44500 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is C44500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
41
Tensile Strength: Ultimate (UTS), MPa 270
350
Tensile Strength: Yield (Proof), MPa 160
120

Thermal Properties

Latent Heat of Fusion, J/g 530
180
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 620
940
Melting Onset (Solidus), °C 530
900
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 100
110
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
25
Electrical Conductivity: Equal Weight (Specific), % IACS 82
27

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.6
2.7
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1040
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 170
65
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 26
12
Strength to Weight: Bending, points 33
13
Thermal Diffusivity, mm2/s 42
35
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
70 to 73
Iron (Fe), % 0 to 1.3
0 to 0.060
Lead (Pb), % 0 to 0.35
0 to 0.070
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.55
0
Phosphorus (P), % 0
0.020 to 0.1
Silicon (Si), % 8.0 to 11
0
Tin (Sn), % 0 to 0.15
0.9 to 1.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
25.2 to 29.1
Residuals, % 0
0 to 0.4