MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. C66900 Brass

EN AC-46000 aluminum belongs to the aluminum alloys classification, while C66900 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 1.0
1.1 to 26
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
45
Tensile Strength: Ultimate (UTS), MPa 270
460 to 770
Tensile Strength: Yield (Proof), MPa 160
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 530
190
Maximum Temperature: Mechanical, °C 180
150
Melting Completion (Liquidus), °C 620
860
Melting Onset (Solidus), °C 530
850
Specific Heat Capacity, J/kg-K 880
400
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 82
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.6
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1040
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 26
15 to 26
Strength to Weight: Bending, points 33
16 to 23
Thermal Shock Resistance, points 12
14 to 23

Alloy Composition

Aluminum (Al), % 79.7 to 90
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
62.5 to 64.5
Iron (Fe), % 0 to 1.3
0 to 0.25
Lead (Pb), % 0 to 0.35
0 to 0.050
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
11.5 to 12.5
Nickel (Ni), % 0 to 0.55
0
Silicon (Si), % 8.0 to 11
0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
22.5 to 26
Residuals, % 0
0 to 0.2