MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. C90500 Gun Metal

EN AC-46000 aluminum belongs to the aluminum alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 1.0
20
Fatigue Strength, MPa 110
90
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
40
Tensile Strength: Ultimate (UTS), MPa 270
320
Tensile Strength: Yield (Proof), MPa 160
160

Thermal Properties

Latent Heat of Fusion, J/g 530
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 620
1000
Melting Onset (Solidus), °C 530
850
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 100
75
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
11
Electrical Conductivity: Equal Weight (Specific), % IACS 82
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
35
Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 7.6
3.6
Embodied Energy, MJ/kg 140
59
Embodied Water, L/kg 1040
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
54
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 26
10
Strength to Weight: Bending, points 33
12
Thermal Diffusivity, mm2/s 42
23
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 79.7 to 90
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 2.0 to 4.0
86 to 89
Iron (Fe), % 0 to 1.3
0 to 0.2
Lead (Pb), % 0 to 0.35
0 to 0.3
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.55
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 8.0 to 11
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.15
9.0 to 11
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
1.0 to 3.0
Residuals, % 0
0 to 0.3