MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. Grade TDCrV Steel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while grade TDCrV steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is grade TDCrV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
520
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 270
1730

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 110
49
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.9
Embodied Energy, MJ/kg 140
26
Embodied Water, L/kg 1030
49

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 27
61
Strength to Weight: Bending, points 34
41
Thermal Diffusivity, mm2/s 44
13
Thermal Shock Resistance, points 12
51

Alloy Composition

Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0.62 to 0.72
Chromium (Cr), % 0 to 0.15
0.4 to 0.6
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 0 to 1.1
97.8 to 98.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0.5 to 0.9
Nickel (Ni), % 0 to 0.45
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10 to 12
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0