MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. Nickel 30

EN AC-46100 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
82
Tensile Strength: Ultimate (UTS), MPa 270
660
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 550
320
Maximum Temperature: Mechanical, °C 180
1020
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 7.6
9.4
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1030
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 27
22
Strength to Weight: Bending, points 34
20
Thermal Diffusivity, mm2/s 44
2.7
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 1.5 to 2.5
1.0 to 2.4
Iron (Fe), % 0 to 1.1
13 to 17
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.45
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10 to 12
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0