MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. Nickel 80A

EN AC-46100 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
22
Fatigue Strength, MPa 110
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Tensile Strength: Ultimate (UTS), MPa 270
1040
Tensile Strength: Yield (Proof), MPa 160
710

Thermal Properties

Latent Heat of Fusion, J/g 550
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 540
1310
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 110
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 7.6
9.8
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1030
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 27
35
Strength to Weight: Bending, points 34
27
Thermal Diffusivity, mm2/s 44
2.9
Thermal Shock Resistance, points 12
31

Alloy Composition

Aluminum (Al), % 80.4 to 88.5
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.15
18 to 21
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 1.1
0 to 3.0
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.45
69.4 to 79.7
Silicon (Si), % 10 to 12
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
1.8 to 2.7
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0