MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. S35315 Stainless Steel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
46
Fatigue Strength, MPa 110
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 270
740
Tensile Strength: Yield (Proof), MPa 160
300

Thermal Properties

Latent Heat of Fusion, J/g 550
330
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 600
1370
Melting Onset (Solidus), °C 540
1330
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.6
5.7
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 1030
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
270
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 27
26
Strength to Weight: Bending, points 34
23
Thermal Diffusivity, mm2/s 44
3.1
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0 to 0.15
24 to 26
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 1.1
33.6 to 40.6
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Nickel (Ni), % 0 to 0.45
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10 to 12
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0