MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. 2014 Aluminum

Both EN AC-46200 aluminum and 2014 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 1.1
1.5 to 16
Fatigue Strength, MPa 87
90 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 210
190 to 500
Tensile Strength: Yield (Proof), MPa 130
100 to 440

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 540
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 110
150
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
40
Electrical Conductivity: Equal Weight (Specific), % IACS 88
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.7
8.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1060
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
6.6 to 56
Resilience: Unit (Modulus of Resilience), kJ/m3 110
76 to 1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 21
18 to 46
Strength to Weight: Bending, points 28
25 to 46
Thermal Diffusivity, mm2/s 44
58
Thermal Shock Resistance, points 9.5
8.4 to 22

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
90.4 to 95
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 2.0 to 3.5
3.9 to 5.0
Iron (Fe), % 0 to 0.8
0 to 0.7
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0.2 to 0.8
Manganese (Mn), % 0.15 to 0.65
0.4 to 1.2
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 7.5 to 9.5
0.5 to 1.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 1.2
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15