MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. CC755S Brass

EN AC-46200 aluminum belongs to the aluminum alloys classification, while CC755S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 82
110
Elastic (Young's, Tensile) Modulus, GPa 73
100
Elongation at Break, % 1.1
9.5
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 210
390
Tensile Strength: Yield (Proof), MPa 130
250

Thermal Properties

Latent Heat of Fusion, J/g 510
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 620
820
Melting Onset (Solidus), °C 540
780
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 110
120
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
27
Electrical Conductivity: Equal Weight (Specific), % IACS 88
30

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1060
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
33
Resilience: Unit (Modulus of Resilience), kJ/m3 110
290
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 21
14
Strength to Weight: Bending, points 28
15
Thermal Diffusivity, mm2/s 44
38
Thermal Shock Resistance, points 9.5
13

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
0.4 to 0.7
Copper (Cu), % 2.0 to 3.5
59.5 to 61
Iron (Fe), % 0 to 0.8
0.050 to 0.2
Lead (Pb), % 0 to 0.25
1.2 to 1.7
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0 to 0.050
Nickel (Ni), % 0 to 0.35
0 to 0.2
Silicon (Si), % 7.5 to 9.5
0 to 0.050
Tin (Sn), % 0 to 0.15
0 to 0.3
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
35.8 to 38.9
Residuals, % 0 to 0.25
0