MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. Sintered 6061 Aluminum

Both EN AC-46200 aluminum and sintered 6061 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.1
0.5 to 6.0
Fatigue Strength, MPa 87
32 to 62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 210
83 to 210
Tensile Strength: Yield (Proof), MPa 130
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 540
610
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 110
200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
52
Electrical Conductivity: Equal Weight (Specific), % IACS 88
170

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1060
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 110
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 21
8.6 to 21
Strength to Weight: Bending, points 28
16 to 29
Thermal Diffusivity, mm2/s 44
81
Thermal Shock Resistance, points 9.5
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
96 to 99.4
Copper (Cu), % 2.0 to 3.5
0 to 0.5
Iron (Fe), % 0 to 0.8
0
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0.4 to 1.2
Manganese (Mn), % 0.15 to 0.65
0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 7.5 to 9.5
0.2 to 0.8
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0
0 to 1.5