MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. C95800 Bronze

EN AC-46200 aluminum belongs to the aluminum alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 1.1
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 210
660
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 510
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 620
1060
Melting Onset (Solidus), °C 540
1040
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 110
36
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 88
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.7
3.4
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 1060
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 44
9.9
Thermal Shock Resistance, points 9.5
23

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
8.5 to 9.5
Copper (Cu), % 2.0 to 3.5
79 to 83.2
Iron (Fe), % 0 to 0.8
3.5 to 4.5
Lead (Pb), % 0 to 0.25
0 to 0.030
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0.8 to 1.5
Nickel (Ni), % 0 to 0.35
4.0 to 5.0
Silicon (Si), % 7.5 to 9.5
0 to 0.1
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0
0 to 0.5