MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. N06230 Nickel

EN AC-46200 aluminum belongs to the aluminum alloys classification, while N06230 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is N06230 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.1
38 to 48
Fatigue Strength, MPa 87
250 to 360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 210
620 to 840
Tensile Strength: Yield (Proof), MPa 130
330 to 400

Thermal Properties

Latent Heat of Fusion, J/g 510
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 620
1370
Melting Onset (Solidus), °C 540
1300
Specific Heat Capacity, J/kg-K 880
420
Thermal Conductivity, W/m-K 110
8.9
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 88
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
85
Density, g/cm3 2.8
9.5
Embodied Carbon, kg CO2/kg material 7.7
11
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1060
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
200 to 330
Resilience: Unit (Modulus of Resilience), kJ/m3 110
250 to 380
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
21
Strength to Weight: Axial, points 21
18 to 25
Strength to Weight: Bending, points 28
17 to 21
Thermal Diffusivity, mm2/s 44
2.3
Thermal Shock Resistance, points 9.5
17 to 23

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
0.2 to 0.5
Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20 to 24
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 2.0 to 3.5
0
Iron (Fe), % 0 to 0.8
0 to 3.0
Lanthanum (La), % 0
0.0050 to 0.050
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0.3 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Nickel (Ni), % 0 to 0.35
47.5 to 65.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0.25 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
13 to 15
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0