MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. N06255 Nickel

EN AC-46200 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.1
45
Fatigue Strength, MPa 87
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 210
660
Tensile Strength: Yield (Proof), MPa 130
250

Thermal Properties

Latent Heat of Fusion, J/g 510
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 7.7
9.4
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1060
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 28
20
Thermal Shock Resistance, points 9.5
17

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 2.0 to 3.5
0 to 1.2
Iron (Fe), % 0 to 0.8
6.0 to 24
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0 to 0.35
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0