MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. S13800 Stainless Steel

EN AC-46200 aluminum belongs to the aluminum alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 82
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
11 to 18
Fatigue Strength, MPa 87
410 to 870
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 210
980 to 1730
Tensile Strength: Yield (Proof), MPa 130
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 510
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 88
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.7
3.4
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 1060
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1090 to 5490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 21
35 to 61
Strength to Weight: Bending, points 28
28 to 41
Thermal Diffusivity, mm2/s 44
4.3
Thermal Shock Resistance, points 9.5
33 to 58

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 2.0 to 3.5
0
Iron (Fe), % 0 to 0.8
73.6 to 77.3
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.35
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 7.5 to 9.5
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0