MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. S35125 Stainless Steel

EN AC-46200 aluminum belongs to the aluminum alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
39
Fatigue Strength, MPa 87
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 210
540
Tensile Strength: Yield (Proof), MPa 130
230

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 88
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.7
6.4
Embodied Energy, MJ/kg 140
89
Embodied Water, L/kg 1060
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 44
3.1
Thermal Shock Resistance, points 9.5
12

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 2.0 to 3.5
0
Iron (Fe), % 0 to 0.8
36.2 to 45.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.35
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.5 to 9.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0