MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. S36200 Stainless Steel

EN AC-46200 aluminum belongs to the aluminum alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
3.4 to 4.6
Fatigue Strength, MPa 87
450 to 570
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 210
1180 to 1410
Tensile Strength: Yield (Proof), MPa 130
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 510
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 88
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1060
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 110
2380 to 3930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 21
42 to 50
Strength to Weight: Bending, points 28
32 to 36
Thermal Diffusivity, mm2/s 44
4.3
Thermal Shock Resistance, points 9.5
40 to 48

Alloy Composition

Aluminum (Al), % 82.6 to 90.3
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 2.0 to 3.5
0
Iron (Fe), % 0 to 0.8
75.4 to 79.5
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 0.35
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0.6 to 0.9
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0