MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. 6262A Aluminum

Both EN AC-46300 aluminum and 6262A aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.1
4.5 to 11
Fatigue Strength, MPa 79
94 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 200
310 to 410
Tensile Strength: Yield (Proof), MPa 110
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 490
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 530
580
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
45
Electrical Conductivity: Equal Weight (Specific), % IACS 84
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 7.7
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1060
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 89
540 to 1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
49
Strength to Weight: Axial, points 20
31 to 41
Strength to Weight: Bending, points 27
36 to 44
Thermal Diffusivity, mm2/s 47
67
Thermal Shock Resistance, points 9.1
14 to 18

Alloy Composition

Aluminum (Al), % 84 to 90
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 3.0 to 4.0
0.15 to 0.4
Iron (Fe), % 0 to 0.8
0 to 0.7
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0.8 to 1.2
Manganese (Mn), % 0.2 to 0.65
0 to 0.15
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 6.5 to 8.0
0.4 to 0.8
Tin (Sn), % 0 to 0.1
0.4 to 1.0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.65
0 to 0.25
Residuals, % 0
0 to 0.15