MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. AISI 201LN Stainless Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
25 to 51
Fatigue Strength, MPa 79
340 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 200
740 to 1060
Tensile Strength: Yield (Proof), MPa 110
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 490
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
38
Embodied Water, L/kg 1060
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 89
310 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
27 to 38
Strength to Weight: Bending, points 27
24 to 30
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 9.1
16 to 23

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 0 to 0.8
67.9 to 73.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
6.4 to 7.5
Nickel (Ni), % 0 to 0.3
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 8.0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0