MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. ASTM A369 Grade FP91

EN AC-46300 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
19
Fatigue Strength, MPa 79
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200
670
Tensile Strength: Yield (Proof), MPa 110
460

Thermal Properties

Latent Heat of Fusion, J/g 490
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 84
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1060
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 89
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 47
6.9
Thermal Shock Resistance, points 9.1
18

Alloy Composition

Aluminum (Al), % 84 to 90
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 0.8
87.3 to 90.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 8.0
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.65
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.55
0