MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. AWS E90C-D2

EN AC-46300 aluminum belongs to the aluminum alloys classification, while AWS E90C-D2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is AWS E90C-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 200
690
Tensile Strength: Yield (Proof), MPa 110
620

Thermal Properties

Latent Heat of Fusion, J/g 490
250
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.5
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.7
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1060
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 89
1010
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 47
13
Thermal Shock Resistance, points 9.1
20

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 3.0 to 4.0
0 to 0.35
Iron (Fe), % 0 to 0.8
95.5 to 98.6
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
1.0 to 1.9
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 8.0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0
0 to 0.5