MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. EN 1.4029 Stainless Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while EN 1.4029 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
10 to 20
Fatigue Strength, MPa 79
270 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 200
700 to 930
Tensile Strength: Yield (Proof), MPa 110
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 490
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 84
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1060
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 89
440 to 1410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
25 to 33
Strength to Weight: Bending, points 27
23 to 27
Thermal Diffusivity, mm2/s 47
8.1
Thermal Shock Resistance, points 9.1
26 to 34

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 0.8
82.8 to 87.6
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 8.0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.25
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0