MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. EN 1.4482 Stainless Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 79
420 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 200
770 to 800
Tensile Strength: Yield (Proof), MPa 110
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 490
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 140
38
Embodied Water, L/kg 1060
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 89
690 to 820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
28 to 29
Strength to Weight: Bending, points 27
24 to 25
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 9.1
21 to 22

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 3.0 to 4.0
0 to 1.0
Iron (Fe), % 0 to 0.8
66.1 to 74.9
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.3
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 6.5 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0