MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. EN 1.4818 Stainless Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while EN 1.4818 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is EN 1.4818 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
40
Fatigue Strength, MPa 79
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 200
700
Tensile Strength: Yield (Proof), MPa 110
330

Thermal Properties

Latent Heat of Fusion, J/g 490
300
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1060
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
230
Resilience: Unit (Modulus of Resilience), kJ/m3 89
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 27
23
Thermal Diffusivity, mm2/s 47
4.5
Thermal Shock Resistance, points 9.1
15

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 0.8
65.6 to 71.8
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
0 to 1.0
Nickel (Ni), % 0 to 0.3
9.0 to 11
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 8.0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0