MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. EN 1.4849 Stainless Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
140
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
4.5
Fatigue Strength, MPa 79
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200
480
Tensile Strength: Yield (Proof), MPa 110
250

Thermal Properties

Latent Heat of Fusion, J/g 490
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 530
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
42
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
7.1
Embodied Energy, MJ/kg 140
100
Embodied Water, L/kg 1060
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
18
Resilience: Unit (Modulus of Resilience), kJ/m3 89
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 20
17
Strength to Weight: Bending, points 27
17
Thermal Diffusivity, mm2/s 47
3.2
Thermal Shock Resistance, points 9.1
11

Alloy Composition

Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 0.8
32.6 to 43.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 8.0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0