MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. EN 2.4951 Nickel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
34
Fatigue Strength, MPa 79
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 200
750
Tensile Strength: Yield (Proof), MPa 110
270

Thermal Properties

Latent Heat of Fusion, J/g 490
320
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 630
1360
Melting Onset (Solidus), °C 530
1310
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 7.7
9.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1060
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
200
Resilience: Unit (Modulus of Resilience), kJ/m3 89
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 47
3.1
Thermal Shock Resistance, points 9.1
23

Alloy Composition

Aluminum (Al), % 84 to 90
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 3.0 to 4.0
0 to 0.5
Iron (Fe), % 0 to 0.8
0 to 5.0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
0 to 1.0
Nickel (Ni), % 0 to 0.3
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0.2 to 0.6
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0