MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. 2219 Aluminum

Both EN AC-46400 aluminum and 2219 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is 2219 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 1.1 to 1.7
2.2 to 20
Fatigue Strength, MPa 75 to 85
90 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 170 to 310
180 to 480
Tensile Strength: Yield (Proof), MPa 110 to 270
88 to 390

Thermal Properties

Latent Heat of Fusion, J/g 520
390
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 570
540
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 130
110 to 170
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
28 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 110
81 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
9.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
54 to 1060
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
44
Strength to Weight: Axial, points 18 to 32
16 to 43
Strength to Weight: Bending, points 26 to 38
23 to 44
Thermal Diffusivity, mm2/s 55
42 to 63
Thermal Shock Resistance, points 7.8 to 14
8.2 to 22

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
91.5 to 93.8
Copper (Cu), % 0.8 to 1.3
5.8 to 6.8
Iron (Fe), % 0 to 0.8
0 to 0.3
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0 to 0.020
Manganese (Mn), % 0.15 to 0.55
0.2 to 0.4
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 8.3 to 9.7
0 to 0.2
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0.020 to 0.1
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.8
0 to 0.1
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants