MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. 5449 Aluminum

Both EN AC-46400 aluminum and 5449 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is 5449 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.1 to 1.7
4.0 to 17
Fatigue Strength, MPa 75 to 85
78 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 170 to 310
210 to 330
Tensile Strength: Yield (Proof), MPa 110 to 270
91 to 260

Thermal Properties

Latent Heat of Fusion, J/g 520
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
650
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 7.8
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
12 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
60 to 480
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 18 to 32
22 to 33
Strength to Weight: Bending, points 26 to 38
29 to 39
Thermal Diffusivity, mm2/s 55
56
Thermal Shock Resistance, points 7.8 to 14
9.4 to 15

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
94.1 to 97.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0.8 to 1.3
0 to 0.3
Iron (Fe), % 0 to 0.8
0 to 0.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
1.6 to 2.6
Manganese (Mn), % 0.15 to 0.55
0.6 to 1.1
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 8.3 to 9.7
0 to 0.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.8
0 to 0.3
Residuals, % 0
0 to 0.15