MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. ASTM Grade LC9 Steel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while ASTM grade LC9 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is ASTM grade LC9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77 to 120
200
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
22
Fatigue Strength, MPa 75 to 85
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 170 to 310
660
Tensile Strength: Yield (Proof), MPa 110 to 270
590

Thermal Properties

Latent Heat of Fusion, J/g 520
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1070
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
140
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
920
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 18 to 32
23
Strength to Weight: Bending, points 26 to 38
21
Thermal Shock Resistance, points 7.8 to 14
20

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0
0 to 0.5
Copper (Cu), % 0.8 to 1.3
0 to 0.3
Iron (Fe), % 0 to 0.8
87.4 to 91.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 0.9
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.2
8.5 to 10
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.3 to 9.7
0 to 0.45
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0