MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. AWS ER90S-B9

EN AC-46400 aluminum belongs to the aluminum alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 170 to 310
690
Tensile Strength: Yield (Proof), MPa 110 to 270
470

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1070
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
570
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 18 to 32
25
Strength to Weight: Bending, points 26 to 38
22
Thermal Diffusivity, mm2/s 55
6.9
Thermal Shock Resistance, points 7.8 to 14
19

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0.8 to 1.3
0 to 0.2
Iron (Fe), % 0 to 0.8
84.4 to 90.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 0.2
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 8.3 to 9.7
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0
0 to 0.5