MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. EN 1.4823 Stainless Steel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1 to 1.7
3.4
Fatigue Strength, MPa 75 to 85
130
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 170 to 310
620
Tensile Strength: Yield (Proof), MPa 110 to 270
290

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 890
490
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.8
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1070
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
17
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
200
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
26
Strength to Weight: Axial, points 18 to 32
23
Strength to Weight: Bending, points 26 to 38
21
Thermal Diffusivity, mm2/s 55
4.5
Thermal Shock Resistance, points 7.8 to 14
17

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
60.9 to 70.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.3 to 9.7
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0