MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. EN 1.4849 Stainless Steel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while EN 1.4849 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is EN 1.4849 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77 to 120
140
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
4.5
Fatigue Strength, MPa 75 to 85
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 170 to 310
480
Tensile Strength: Yield (Proof), MPa 110 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 520
320
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 570
1340
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.8
7.1
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1070
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
18
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 18 to 32
17
Strength to Weight: Bending, points 26 to 38
17
Thermal Diffusivity, mm2/s 55
3.2
Thermal Shock Resistance, points 7.8 to 14
11

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
32.6 to 43.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.2
36 to 39
Niobium (Nb), % 0
1.2 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.3 to 9.7
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0