MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. EN 2.4815 Cast Nickel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
3.4
Fatigue Strength, MPa 75 to 85
89
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 170 to 310
460
Tensile Strength: Yield (Proof), MPa 110 to 270
220

Thermal Properties

Latent Heat of Fusion, J/g 520
330
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1510
Melting Onset (Solidus), °C 570
1450
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
47
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 7.8
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1070
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
13
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 18 to 32
15
Strength to Weight: Bending, points 26 to 38
16
Thermal Diffusivity, mm2/s 55
6.4
Thermal Shock Resistance, points 7.8 to 14
17

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
12 to 18
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
9.8 to 28.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.3 to 9.7
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0