MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. Grade CW6MC Nickel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1 to 1.7
28
Fatigue Strength, MPa 75 to 85
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 170 to 310
540
Tensile Strength: Yield (Proof), MPa 110 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 520
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 7.8
14
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1070
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 18 to 32
18
Strength to Weight: Bending, points 26 to 38
17
Thermal Diffusivity, mm2/s 55
2.8
Thermal Shock Resistance, points 7.8 to 14
15

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
0 to 5.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.2
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 8.3 to 9.7
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0