MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. Grade M30C Nickel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while grade M30C nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
160
Elongation at Break, % 1.1 to 1.7
29
Fatigue Strength, MPa 75 to 85
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
61
Tensile Strength: Ultimate (UTS), MPa 170 to 310
510
Tensile Strength: Yield (Proof), MPa 110 to 270
250

Thermal Properties

Latent Heat of Fusion, J/g 520
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1290
Melting Onset (Solidus), °C 570
1240
Specific Heat Capacity, J/kg-K 890
430
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 7.8
9.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
120
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
200
Stiffness to Weight: Axial, points 15
10
Stiffness to Weight: Bending, points 52
21
Strength to Weight: Axial, points 18 to 32
16
Strength to Weight: Bending, points 26 to 38
16
Thermal Diffusivity, mm2/s 55
5.7
Thermal Shock Resistance, points 7.8 to 14
18

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 0.8 to 1.3
26 to 33
Iron (Fe), % 0 to 0.8
0 to 3.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 1.5
Nickel (Ni), % 0 to 0.2
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.3 to 9.7
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0