MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. Nickel 242

EN AC-46400 aluminum belongs to the aluminum alloys classification, while nickel 242 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is nickel 242.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
220
Elongation at Break, % 1.1 to 1.7
45
Fatigue Strength, MPa 75 to 85
300
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 170 to 310
820
Tensile Strength: Yield (Proof), MPa 110 to 270
350

Thermal Properties

Latent Heat of Fusion, J/g 520
330
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 610
1380
Melting Onset (Solidus), °C 570
1290
Specific Heat Capacity, J/kg-K 890
400
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 7.8
14
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1070
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
300
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
280
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
22
Strength to Weight: Axial, points 18 to 32
25
Strength to Weight: Bending, points 26 to 38
21
Thermal Diffusivity, mm2/s 55
3.1
Thermal Shock Resistance, points 7.8 to 14
25

Alloy Composition

Aluminum (Al), % 85.4 to 90.5
0 to 0.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
7.0 to 9.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.8 to 1.3
0 to 0.5
Iron (Fe), % 0 to 0.8
0 to 2.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 0.8
Molybdenum (Mo), % 0
24 to 26
Nickel (Ni), % 0 to 0.2
59.3 to 69
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.3 to 9.7
0 to 0.8
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0